

Sodium-cooled Fast Reactor (SFR) Systems

Jordi Roglans, Todd Allen and Michael Lineberry
ANS Winter Meeting
Washington, D.C., November 18, 2002

Concept Description

- Sodium-cooled fast spectrum reactors using a closed fuel cycle with full actinide recycle
- Missions: Actinide management and electricity production
 - » Reduces physical demands on repositories
 - » Utilizes the entire natural resource of fissionable material
- Estimated Deployment Date: 2020

SFR – Sodium-cooled fast reactor systems

Fuel Cycle

- Goals
 - Recovery and recycle of 99.9% of the actinides
 - Only trace amounts of fissile material to repository
 - Inherently low decontamination factor of the product (recovered actinides for recycle), making it highly radioactive
 - Never separating plutonium at any stage
- Fuel Options
 - Oxide
 - Metal
- Processing Options
 - Advanced Aqueous
 - Pyroprocessing

SFR – Sodium-cooled fast reactor systems

Advanced Aqueous Technology

Uranium Crystallization - removes bulk of heavy metal

Uranium and Plutonium coextracted with Np

Simplified pelletizing process

Waste form - vitrified glass

Pyroprocessing

Plutonium and other transuranics carried with uranium

Metallic and ceramic waste forms

Sodium-cooled Fast Reactor (SFR)

Reactor

Benefits

- •Safety case relies on passive response
- •Classical ATWS events cause no fuel damage
- Decay heat removal system needs no forced circulation
- •Large thermal inertia
- •Large margins to boiling, low pressure, single phase phenomena

Reactor Parameters	Reference Value
Outlet Temperature (°C)	530-550
Pressure (Atmospheres)	~1
Rating (MWth)	1000-5000
Fuel	Oxide or metal alloy
Cladding	Ferritic or ODS ferritic
Average Burnup (MWd/kgHM)	~150-200
Conversion Ratio	0.5-1.30
Average Power Density	350 MWth/m ³

Advanced Aqueous Fuel Cycle

- Crystallization performance of actinides and uranium, and the separation efficiency of solids at engineering scale
- Develop the salt-free minor actinide recovery process with high extraction capability for Am and Cm, and separation from lanthanides
- Develop compact centrifugal-type contactors to enable a reduction of the facility size
- Establish the fabricability (in a hot cell facility) of lowdecontamination factor minor actinide-bearing pellet fuel
- Extend current studies of the proliferation resistance of this technology.
- Comparison to other advanced aqueous process (e.g., UREX)

Pyroprocess Fuel Cycle

- Actinide recovery from spent thermal reactor fuel
- Demonstration of plutonium and minor actinide extraction at larger scale
- Minimization of secondary streams.

General Fuel Cycle

 Adapt base advanced aqueous or pyroprocess front and back ends for use in conjunction with other fast spectrum Gen IV concepts (GFR, LFR, SCWR)

Fuel

- Further design base accident specific transient tests at high burnup
- Irradiation and transient testing of recycled fuel fabricated with prototypic (remote) equipment

Reactor safety

- Demonstration of passive safety design: providing assurance that the physical phenomena and related design features relied upon to achieve passive safety are adequately characterized
 - Axial fuel expansion and radial core expansion
 - Self-activated shutdown systems
 - Passive decay heat removal systems
- Accommodation of extremely low probability but higher consequence accident scenarios
 - Recriticality free systems that eliminate compactiondriven recriticality
 - Coolability of debris remaining in the reactor vessel

Reactor Technology

- Improved Economics
 - Design innovations (reduced loops, higher strength steels)
 - Modularization
 - Incorporating a Brayton cycle
- In-service inspection and repair, leak detection.

Implementation and concept studies

Conclusions

- SFR has primary missions of actinide management and electricity production.
- Estimated deployment date: 2020
- Most direct path forward to implementing an effective actinide management strategy
- Development of engineering scale, proliferation resistant, fuel cycle is key
- Parallel reactor research is required to achieve required cost reductions and to place fuel cycle studies in context